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Abstract. An important problem in Computer Aided Design is to cre-
ate digital representations for complex free-form objects that produce
nice, predictable shapes and facilitate real-time editing in 3D. Curve
network-based design is such an approach; the clue to this technology is
the construction of smoothly connected multi-sided patches. A new type
of transfinite surface, called Composite Ribbon (CR) patch, has been
proposed recently in [12], that combines curved ribbon surfaces over a
non-regular, convex polygonal domain. This paper explores important
aspects of this formulation by introducing an enhanced ribbon construc-
tion with a new parameterization scheme using Wachspress coordinates.
The new scheme will be demonstrated and evaluated through a few sim-
ple examples.

1 Introduction

Creating general topology free-form objects, composed of smoothly connected
surface patches, is a fundamental problem in Computer Aided Geometric Design.
Aesthetic appearance is crucial for a wide variety of models including cars, house-
hold appliances, office furniture, containers and many others. While the majority
of such patches are four-sided, almost all industrial objects contain general n-
sided patches that need to be inserted into some arrangement of quadrilaterals.
Two examples are shown in Figures 1a and 1b.

General topology surfacing is a tough problem, and the most widely used
techniques expose certain deficiencies for designers and CAD users. First we
compare the “pros and cons” of these with the multi-sided approach. A very
simple example is shown in Figure 2a, where a 3D curve network of adjacent 5-
and 6-sided patches is given to be directly edited and then interpolated.

The standard approach is to combine a collection of bi-parametric (generally
NURBS) surfaces, then create trimmed patches through a sequence of surface in-
tersections, finally stitch these into a single model, providing tolerance-controlled
numerical continuity. The fundamental problem is that the original boundaries
of the four-sided patch and the trimming curves have different representational
form and design flexibility. For example, creating a truly symmetric three-sided
patch is not possible in the four-sided domain. Or take the example in Figure
2b: it is not obvious at all, how to obtain four boundaries by extending the
given curve segments. There is no known technique to smoothly connect two
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(a) Design by 2D and 3D curves (b) Concept car defined by orthogonal sketches

Fig. 1: Models containing general n-sided patches.

parametric surfaces along their “common” trimming curve. Shape editing of the
common trimming curves is practically impossible, as that would modify the
whole surface representation with their related cross-continuity constraints.

Another approach is splitting n-sided regions into smaller quadrilateral tiles,
as shown in Figure 2c. Here the main difficulty is to find an appropriate cen-
ter point in 3D, adding suitable subdividing curves and producing smoothness
between the tiles. The figure shows the uneven curvature distribution of this ap-
proach. It is an advantage that the network can be edited and the n-patches can
be connected, but the price is that surface quality is likely to be disappointing.

A third, well-known and popular surfacing approach, widely used in the an-
imation industry, is based on recursively subdividing general topology control
polyhedra [3]. This yields a set of smoothly connected quadrilaterals combined
with n-sided surface patches, however, difficulties here include the “ab initio”
creation of a good control polyhedra and directly interpolating and editing pre-
scribed free-form curves with tangential constraints.

In this paper we explore a fourth approach, where the network automati-
cally spans a collection of multi-sided transfinite patches. Feature curves may
come from 2D sketches or images, or may be directly defined in 3D. These
can be edited in a straightforward manner without topological limitations. Any
boundary adjustment naturally modifies the adjacent patches, which are auto-
matically connected in a watertight manner by the ribbon construction (see a
trivial example in 2f). In this way, users can focus on shape concepts and aes-
thetic requirements, and do not need to fiddle with representational difficulties.
The main advantage of the transfinite approach is that the interior of the shape
is solely defined by boundary ribbons, i.e., there is no need to deal with a grid
of interior control points. At the same time, transfinite patches also have their
deficiencies — the generated ribbons may not always meet user expectations,
and surface portions on extruded or rotational surfaces can only be reproduced
in approximate sense.
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(a) Curve network (b) Trimmed surfaces (c) Quadrilateral tiling

(d) Ribbon surfaces (e) Transfinite surfaces (f) Modified network

Fig. 2: Comparison of different modelling approaches.

Figure 2e illustrates the simplicity of the curve network-based paradigm.
From a given curve network, ribbon surfaces are derived for each curve (Fig. 2d),
and from these, transfinite patches are computed. The two previous examples
(Figures 1a and 1b) have also been defined over general topology 3D networks.
When needed, these curves can be modified or their topology redesigned, and
the surface geometry will adjust accordingly.

Transfinite surface interpolation is a classical area of CAGD. Its origin goes
back to the late 60’s, when Coons formulated his Boolean sum surface [2]. In the
next two decades, several papers were published, first on triangular patches (see
summary in [3]), and later on genuine n-sided patches, including the pioneering
work of Charrot and Gregory [1,6], Sabin [11], and Kato [9]. The alternatives
of creating n-sided transfinite patches with different blending functions and pa-
rameterizations have been recently reviewed by the current authors [13]. New
transfinite representations that truly generalize Coons’ approach for n-sides have
been recently proposed in [12].

In this paper we present enhancements concerning one of these new represen-
tations, called Composite Ribbon or CR patches. In Section 2 we briefly revisit
the classical Coons patch formula, as this will be the starting point of our n-
sided surface construction. In Section 3 we introduce the basic constituents of
the scheme with emphasis on the construction of curved ribbons and preferred
ribbon parameterizations. In Section 4 a few examples demonstrate the natural
behavior of CR patches. Suggestions for future work conclude the paper.
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(a) Hermite curve (b) Coons patch

Fig. 3: Boundary constraints.

2 Revisiting Coons patches

First we revisit and reformulate basic curve and surface equations in order to
introduce our new n-sided surface scheme.

2.1 Hermite curves reformulated

A cubic Hermite curve interpolates four discrete quantities: two endpoints P1,
P2, and two tangent vectors T1, T2, multiplied by the Hermite blending functions

α0(u) = 2u3 − 3u2 + 1, α1(u) = −2u3 + 3u2,

β0(u) = u3 − 2u2 + u, β1(u) = u3 − u2,

so
r(u) = P1α0(u) + P2α1(u) + T1β0(u) + T2β1(u),

see Figure 3a.
A similar curve equation can be formulated by combining two continuous,

parametric straight line segments, which we will call linear ribbons. A ribbon has
its own parameter di, and represents a segment with endpoint Pi and tangent
Ti as follows:

Ri(di) = Pi + diTi, di ∈ [0, 1],

then the curve can be written as

r(u) =
∑
i=1,2

Ri(di)α0(di),

using local ribbon parameters computed from the parameter of the curve by
d1(u) = u, d2(u) = 1 − u. Note, that only the first Hermite blending function
needs to be used and T2 has been reversed. The above curve is a quartic vector
polynomial, that satisfies the end constraints and looks “similar” to the Hermite
curve.

Here we propose an enhanced ribbon with non-linear parametrization, as
follows:

Ri(di) = Pi + γ(di)Ti, di ∈ [0, 1],
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where γ(di) is a scalar function. To retain the interpolation properties it is
necessary that γ(0) = 0 and γ′(0) = 1. If we choose γ as the rational function
γ(di) = β0(di)/α0(di) =

di

2di+1 , then r(u) reproduces the original Hermite curve.
This property will be exploited later, as it can be shown that the four-sided CR
patch runs very close to the original Coons patch.

2.2 Coons patches reformulated

It is known that the C1 Coons patch [2] is a four-sided surface S, parameterized in
the (u, v) plane (u, v ∈ [0, 1]). It interpolates four boundaries P1(u), P3(u), P2(v),
P4(v) and four cross-derivative functions T1(u), T3(u), T2(v), T4(v), see Figure
3b. In Coons’ original Boolean sum formulation there are three constituents: an
interpolant connecting side 1 and 3, another interpolant connecting side 2 and 4,
and a term that corrects unwanted artifacts of the two side-to-side interpolants.
The correction surface contains a combination of constant vectors at the corners,
such as Pi(0), P ′i (0), Ti(0) and T ′i (0). In the C1 Coons patch cubic Hermite
blending functions are used.

In order to reformulate the equation based on the sides of the surface, we
introduce cyclic indices (with 1 coming after 4), and so-called side parameters
si = si(u, v). The si-s are associated with the i-th side of the domain (i =
1, . . . , 4) and take the values of u, v, 1−u and 1− v, respectively. For symmetry
reasons, the parameterization of the boundaries are reversed along sides 3 and
4. Grouping the positional and tangential constraints of Pi(si) and Ti(si), and
splitting the correction surface into four parts (each one corresponding to one
corner), we can rewrite the Coons patch as the composition of four side-based
terms minus four corner-based correction terms, as follows:

S(u, v) =

4∑
i=1

[
α0(si+1)
β0(si+1)

]T [
Pi(si)
Ti(si)

]
−

4∑
i=1

[
α0(si+1)
β0(si+1)

]T [
Pi(0) P

′
i (0)

Ti(0) T
′
i (0)

] [
α0(si)
β0(si)

]
.

The derivative of Ti(0) is the twist vector, which is a corner-specific quantity,
also denoted byWi,i−1. We assume that the twist vectors related to the (i−1)-th
and i-th cross-derivative functions are compatible, i.e.,

Wi,i−1 =
∂

∂si
Ti(0) = −

∂

∂si−1
Ti−1(1).

If the twist vectors are not compatible, Gregory’s rational twists need to be
used [5,3].

Now let us construct a Coons patch using enhanced linear ribbons (as in
Section 2.1), i.e., instead of blending eight one-dimensional vector functions,
let us combine four biparametric surfaces similarly to the cubic curves in the
previous section:

Ri(si, di) = Pi(si) + γ(di)Ti(si).

Here we introduce another local parameter, the so-called distance parameter
di = di(u, v), that measures a distance from the i-th boundary; for di = 0
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the positional and tangential constraints are satisfied. In the four-sided case
di = 1− si−1 = si+1 is an obvious choice. The resulting patch equation is

S(u, v) =

4∑
i=1

Ri(si, di)α0(di)−
4∑

i=1

Qi,i−1(si, si−1)α0(si)α1(si−1), (1)

where the corner correction patches Qi,i−1 are given as

Qi,i−1(si, si−1) = Pi(0)+γ(1−si−1)Ti(0)+γ(si)Ti−1(1)+γ(si)γ(1−si−1)Wi,i−1.

The ribbons are ruled surfaces, and the correction patches are bilinear sur-
faces. This formula is identical to the original C1 Coons patch.

3 Composite ribbon patches

The CR patch is a transfinite surface interpolating n ≥ 3 three-dimensional
boundaries Pi(si), 1 ≤ i ≤ n, and related cross-derivative functions Ti(si). We
define the CR patch as a combination of special curved ribbons, which, in turn,
are composed of the previously introduced linear ribbons. (For the construction
of curved ribbons, see Section 3.3.)

Let Γ be a convex polygonal domain in the (u, v) parameter plane, and map
the sides of the polygon, Γi, onto the boundaries of the patch (see Figure 4).
The local side and distance parameters of the ribbons can be computed from
(u, v), i.e., si = si(u, v), di = di(u, v), and we associate a blending function
Bi(u, v) = Bi(d1, . . . , dn) to each side. The CR patch is given as

S(u, v) =
1

2

n∑
i=1

Ci(u, v)Bi(u, v), (2)

where Ci(u, v) = Ci(si, di) denote the curved ribbons. The patch formulation
will be explained in Section 3.5.

In order to create this surface, the following constituents must be provided:
(i) an n-sided domain polygon, (ii) blending functions, (iii) n ribbon surfaces and
(iv) appropriate methods to parameterize the ribbons. The following sections will
treat these one by one.

3.1 Domain polygon

Our experience shows that it is preferable to use non-regular convex domains to
avoid undesirable shape artifacts in extreme geometric configurations. The 2D
polygon is supposed to mimic the 3D boundary configuration by arc lengths and
angles at the corners. The specifics of domain creation does not concern us here;
the reader can find details on different methods in [13].
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Fig. 4: CR patch: domain — ribbon mapping.

3.2 Generalized blending functions

Assume that we have a polygonal domain, and we need blending functions that
reproduce the ribbons along their boundaries. These need to satisfy special inter-
polating properties as will be shown below. For each (u, v) point we determine
an n-tuplet of distance values. Each di is associated with the i-th side: di is
equal to 0 on side Γi, and it increases monotonically as we move away from Γi.
In our patch formulations distance-based rational blending functions are used to
combine ribbons.

The basic requirement is that the blending function Bi is equal to 1 on Γi,
and vanishes on all non-adjacent sides Γj , where j /∈ {i−1, i, i+1}, see Figure 5.
We propose the rational function

Bi(d1, . . . , dn) =
Di,i−1 +Di+1,i∑

j Dj,j−1
,

where Di1...ik =
∏

j /∈{i1...ik} d
2
j . Due to the squared terms, the related partial

derivatives of the blending functions vanish, i.e., ∂
∂dk

Bi(d1, . . . , dj = 0, . . . , dn) =

0 for j /∈ {i− 1, i+ 1}, k ∈ [1 . . . n].

3.3 Ribbon surfaces

Let us assume that the tangential boundary information has already been spec-
ified by the user, or computed automatically based on the given curve network,
i.e., in addition to Pi, the Ti functions are also given. We have already seen
how these can constitute linear ribbons. Nevertheless, it can be observed that
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Fig. 5: A blending function over a six-sided domain.

linear ribbons may largely deviate from the expected surface, which spoils the
predictability of the shape interior, and in unfortunate cases may bring in unex-
pected surface artifacts. This motivated us to apply curved interpolants in the
CR scheme, as these are supposed to run much closer to the final n-sided patch,
and their combination produces better shapes in strongly asymmetric boundary
configurations.

A curved ribbon is defined as the combination of three consecutive linear
ribbons, and it is actually a Coons patch with three of its four sides given, defined
over a local rectangular domain. Let Ci(si, di) denote the curved ribbon for the
i-th side. We simplify the notation and drop the indices of s and d, as it does
not cause any ambiguity. The definition of Ci is as follows (see Fig. 6):

Ci(s, d) = Rl
i(s, d)α0(s) +Ri(s, d)α0(d) +Rr

i (s, d)α1(s)

−
[
Ql

i(s, d)α0(s)α0(d) +Qr
i (s, d)α1(s)α0(d)

]
where Rl

i(s, d), Rr
i (s, d), Ql

i(s, d) and Qr
i (s, d) denote the ribbons and the cor-

rection patches on the left and right sides, respectively. We parameterize these
by the local coordinates of the i-th side as follows:

Rl
i(s, d) = Ri−1(1− d, s) = Pi−1(1− d) + γ(s)Ti−1(1− d),

Rr
i (s, d) = Ri+1(d, 1− s) = Pi+1(d) + γ(1− s)Ti+1(d),

Ql
i(s, d) = Qi,i−1(s, 1− d)

= Pi(0) + γ(s)Ti−1(1) + γ(d)Ti(0) + γ(s)γ(d)Wi,i−1,

Qr
i (s, d) = Qi+1,i(d, s)

= Pi+1(0) + γ(d)Ti(1) + γ(1− s)Ti+1(0) + γ(d)γ(1− s)Wi+1,i.

Note that due to the above construction, d is constrained to lie in [0, 1].
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Fig. 6: Construction of a curved ribbon.

Controlling the fourth side. The above equation shows that the fourth side
of the curved ribbons is “floating” — it is a by-product of the three interpolating
linear ribbons. While this is satisfactory in the majority of cases, it may be
advantegeous to explicitly constrain the fourth side, as it offers further degrees of
freedom to adjust the shape. A possible solution is to indirectly define the fourth
side by an appropriate parametric cubic curve P aux

i (s). This can be implemented
by adding a correction term to the curved ribbon equation:

C∗i (s, d) = C(s, d) + (P aux
i (s)− C(s, 1)) 4α0(s)α1(s)α1(d).

P aux
i (s) has the same endpoints as the default fourth boundary C(s, 1) and

shares common slopes at the distant corners of the ribbon.

3.4 Ribbon parameterization overview

The most crucial issue in all transfinite surface schemes is ribbon parameteriza-
tion, i.e., how to compute the local side and distance parameters (si, di) from a
given (u, v) domain point, see Figure 4. This determines the associated points
of the ribbons and thus has an essential effect on the shape.

We have seen the requirement that dj ∈ [0, 1] (j ∈ [1 . . . n]); it is also natural
to require that each side parameter sj is linear, and for a point on Γi

si ∈ [0, 1], di = 0, si−1 = 1, si+1 = 0. (3)

The distance parameters dj (j ∈ [1 . . . n]) also change linearly along the sides,
so on the i-th side

di−1 = si, di+1 = 1− si. (4)
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In the evaluation of parameterization methods there are two main issues: (i) the
constant si, di parameter lines must have an even distribution in the domain, and
(ii) the (u, v)→ (si, di) mappings must be simple and computationally efficient.
Let us deal with the si and di parameters separately.

In the so-called linear sweep parameterizations the si = const. isolines are
straight lines in the domain space; as si varies from 0 to 1 these lines sweep from
side Γi−1 to side Γi+1, for example using a linear mapping between them.

As for the di = const. isolines, applying Wachspress coordinates [14,4] turned
out to be a good solution. Originally these assign weights to the corners of a
polygon, but it is possible to compute distance isolines by them, as follows. The
barycentric coordinates λi are defined as

λi(u, v) = wi(u, v)/
∑
k

wk(u, v),

where the individual weights are computed by

wi(u, v) = Ci/(Ai−1(u, v) ·Ai(u, v)).

HereAi−1 = 4(pi−1, (u, v), pi),Ai = 4(pi, (u, v), pi+1) and Ci = 4(pi−1, pi, pi+1)
represent triangle areas [8], see Figure 7.

Then the distance di is computed as

di(u, v) = 1− (λi−1(u, v) + λi(u, v)),

which satisfies equations (3) and (4) and edge linearity, due to the properties of
Wachspress coordinates.

Fig. 7: Triangle-based construction of Wachspress coordinates.

An example using the above construction of si and di is shown in Figure 8a.
As a side note, the distribution of the di isolines can be improved, if we force
the di = 1

2 isolines to go through the center point of the domain. This can be
done by a quadratic reparameterization, as follows (see Figure 8b):

d̂i = di ·
[
(1− si)2 + 2(1− si)si · (2µi − 1) + s2i

]
,

where the µi-s are scaling weights assigned to each side. These can be precom-
puted using a binary search, such that di equals to 1

2 at the center of the domain
polygon.
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(a) Wachspress coordinates (b) Scaled Wachspress coordinates

Fig. 8: A five-sided domain with linear si and barycentric di parameter lines.

3.5 Assembling the composite ribbon patch

The CR patch has the simple formula already shown in (2):

S(u, v) =
1

2

n∑
i=1

Ci(u, v)Bi(u, v).

According to the characteristics of the Bi blend functions, for any point on
the i-th boundary all addends of the sum vanish except Ci−1, Ci and Ci+1. Since
each of these ribbons also interpolates the corresponding three boundaries, the
related three points on these ribbons are the same. Their cumulative blend is

Bi−1 +Bi +Bi+1 = (Bi−1 +Bi+1) +Bi = 1 + 1 = 2,

which explains the division by two in the surface equation.
This patch does not satisfy the boundary derivative constraints in strict para-

metric sense (C1), i.e., the multi-sided patch and the ribbon may have different
tangent vectors at a given boundary point. However, it does share a common
tangent plane with the ribbon along the boundary, so G1 continuity remains
valid (see proof in [12]), which is sufficient for surface generation.

4 Examples

Former side-based transfinite schemes combined linear ribbons and applied dif-
ferent blending functions, see for example [10]. While these patches are compu-
tationally simple, they could produce uneven curvatures in the vicinity of the
boundaries. In fact, the main motivation to develop our new schemes — such as
the CR patch — was to avoid these artifacts, see Figure 9.

Figure 10 shows two patches wih the same boundary constraints, where linear
and curved ribbons were combined to obtain multi-sided patches, respectively.
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(a) Conventional patch (b) Composite ribbon patch

Fig. 9: Mean map comparison of a surface using different patch types.

(a) Generalized Coons patch

(b) Composite ribbon patch

Fig. 10: Ribbons and slicing map of a five-sided boundary configuration.
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The first figure shows an alternative scheme (directly generalized Coons patches,
see [12]), while the second shows CR patches with curved ribbons.

The curve network in the third example comes from a 3D drafting system
(courtesy of Cindy Grimm [7]). The network was interpolated by our CR patches,
yielding the model in Figure 11.

(a) Curve network (b) Shading (c) Contouring

Fig. 11: Dolphin test model.

Conclusion

In this paper we have focused on the most crucial part of curve network-based
design, i.e., how to represent collections of multi-sided transfinite surface patches
that naturally fit onto general topology networks, and — at the same time —
make shape editing easy and naturally predictable. In the CR approach curved
ribbons comprising positional and tangential constraints are combined. We have
presented an enhanced ribbon construction together with a simple and efficient
parameterization using barycentric coordinates. Challenging future research top-
ics include fairing operations for curve network-based models and polygonal mesh
approximation by means of transfinite patches, exploiting the free parameters of
the ribbon interpolants.
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