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Abstract. Modern graphics processing units (GPUs) offer high level of
parallelism and huge computational power which makes them suitable for
complex calculations and processing of voxel data, including Computed
Tomography (CT) image reconstruction. 3D reconstruction has higher
computational cost but superior image quality than 2D methods. Using
a fast GPU-based algorithm, these 3D algorithms became fast enough to
be used in commercial CT equipment.
In our paper we present our extended CT reconstruction framework with
3D reconstruction. We implement the Tang and xFDK algorithms. These
are based on the Feldkamp-Davis-Kress (FDK) method and extend the
field of view as much as possible. We evaluate speed and image quality
using real measurements with Mediso CT equipment.

1 Introduction

The 2D filtered backprojection (FBP) [1][2] is still the industry standard for CT
image reconstruction used in human cameras. FBP provides acceptable image
quality with well-known artifacts, including streaks and rings [3][4]. However
with the advancement of processing hardware, 3D reconstruction is getting more
attention and becomes an alternative to 2D methods.

In our previous paper we presented our real-time, GPU based reconstruc-
tion framework capable of 2D FBP and MLTR1 reconstruction for the Mediso
AnyScan CT (Mediso Ltd.) [5]. Our GPU implementations use CUDA2 and sup-
port NVIDIA3 graphics hardware. We also developed a GPU based cone-beam
CT reconstruction for in vivo imaging, used in Mediso NanoPET/CT (Mediso
Ltd.) [6][7][8].

We have extended our existing reconstruction framework to accommodate
the native 3D cone-beam geometry of the AnyScan CT. This enabled us to

1 Maximum Likelihood for Transmission tomography
2 Compute Unified Device Architecture - http://www.nvidia.com/object/cuda home new.html
3 http://www.nvidia.com
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remove 2D rebinning from the reconstruction pipeline. The whole reconstruction
is running on the GPU, minimizing unnecessary data transfers between system
and device memory.

However, using 3D geometry introduces new problems and artifacts which
result uneven image quality along the axial direction. Reconstructed slices fur-
ther away from the x-ray source suffer increased quality loss. The original FDK
algorithm [9] suffers greatly from these artifacts.

In human CT development, one desirable goal is to minimize the dose usage
while maintaining high image quality. To achieve this we extend the reconstruc-
tion area by reducing cone-beam artifacts. We implemented the extended FDK
(xFDK) [10] and Tangs method [11], compared them to the original FDK and
evaluated their practical use in human CT.

2 Cone-beam CT reconstruction

2.1 Overview

Third generation CT equipment have large detectors with multiple rows. For
example the Anyscan CT has 16 rows and it is able to reconstruct 16 slices at
once. Its detector has a cylindrical surface, hence we refer to it as cylindrical
cone-beam geometry. In many applications, the detector has a flat surface, but
this yields only minor differences in most reconstruction algorithms.

S

z

β

0

15

Fig. 1. Cylindrical cone-beam geometry. S is the position of the source, β is the view
or gantry angle. The numbers next to the detector indicate the indexing of the 16
detector rows (the indices start from 0)

We further differentiate 3D reconstruction based on source trajectory. The
two simple trajectories used in commercial CT are called circular and helical.
In our article, we discuss the circular (or axial) case only. The gantry is rotated
with a constant speed and the patient table remains stationary. In a coordinate
system fixed to the table, the trajectory is a circle.

 
KÉPAF 2013 – a Képfeldolgozók és Alakfelismerők Társaságának 9. országos konferenciája 

 

 
 

352 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ᵞ

x

y
S

ξ

z

S

zFOVFOV

Fig. 2. Axial and sagittal view of cone-beam geometry. The coordinate system is fixed
to the gantry. S is the position of the source, FOV is the axial, ZFOV is the transaxial
field of view. γ and ξ mark the fan and cone angles.

The axial cone-beam geometry is shown in Figure 1. The position of the
gantry is measured as the view angle β. The gantry rotates along the z axis.
Axial and sagittal views are shown in Figure 2. Reconstructed slices correspond
to detector rows marked 1..16. The source position on the z axis is between slice
8 and 9. Slices 1 and 16 are the furthest away from the center. The fan and
the cone angles are marked as γ and ξ, respectively. Please note that when we
talk about the fan or cone angle of a CT system, we usually mean the angle
between the two outermost detector elements along the corresponding axis. This
is usually the double of the maximal γ or ξ angles used in this paper.

2.2 FDK method

Exact reconstruction means, that the difference between the reconstructed and
the original object can be arbitrarily small by increasing detector and voxel
resolution and the number of views. The theoretical background of 3D cone-
beam reconstruction is derived from the 3D radon transform. Plane integrals
are calculated along parallel rays passing through the object. According to the
Tuy-Smith sufficiency condition [12], exact reconstruction is only possible if all
planes going through the object intersect the source trajectory at least once. For
circular reconstruction, this condition is obviously not satisfied, except in the
central plane.

This conclusion leads us to approximate methods, namely the FDK method
by Feldkamp, Davis and Kress [9]. This method originates from the 2D FBP
algorithm for fan-beam geometry. It basically regards the 3D projection data as
a series of 2D fan-beam projections. The projections are filtered line by line in
2D and backprojected onto the volume.

Similar to fan-beam geometry, rays with a higher cone angle traverse a longer
path in the object. This is approximated by multiplying the projection data with
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cos(ξ), where ξ is the cone angle of the given detector element. For an object
which is homogeneous in the z direction, this correction gives exact results.

The FDK method was originally intended for flat detector, however a slightly
modified version called C-FDK exists for cylindrical detectors [13].

Algorithm 1. The main steps of the FDK method are the following.
Step 1. Calculate filtered and corrected sinogram data:

p̂(β, γ, q) = (cos(γ) cos(ξ)p(β, γ, q)) ∗ g(γ)) (1)

Step 2. Calculate voxel values (backprojection):

f(x, y, z) =

∫ 2π

0

R2

L(x, y, β)2
p̂(β, γ, q)δβ (2)

Algorithm 1 shows the filtering and the backprojection steps of FDK. The
input projections are marked as p(β, γ, q), where β and γ are the view and fan
angles respectively. Parameter q addresses the detector along the z direction (see
Fig. 1). The filtered sinogram is noted as p̂. The filter operator is f(γ).

The voxel values f(x, y, z) are calculated using equation (2). In practice, the
integral is approximated as a summation for all available views. Parameter R is
the distance of the source from the rotation center. L is the distance of the voxel
from the center.

2.3 Extending reconstruction area

An important practical question is the maximal reconstructible area using a
given detector and source trajectory. In parallel geometry, according to the orig-
inal FBP algorithm, a slice is reconstructible if there are projections available
from at least 180◦.

In fan-beam geometry, this value is

π + γ/2. (3)

Equation 3 is derived from the the rebinning equations between the fan and
parallel geometries:

θ = β + γ, t = R sin γ (4)

The area where voxels are reconstructed is called the field of view (FOV).
The axial and transaxial field of view is shown as FOV and ZFOV in Figure 2.
This area is usually selected by the user, but limited by the detector geometry.
Inside the FOV reside voxels projected onto the detector in every view. We also
say these voxels are fully illuminated or visible under 360◦. In the axial plane,
this area is a circle around the center of rotation.

A full-scan is called when view data from 360◦ are available. If voxels are
visible from less than 360◦, we talk about a short-scan.
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Fig. 3. The double cone in 2D (the highlighted area) where data under 360◦ are avail-
able. S and S180 are the source positions for view angles 0◦ and 180◦. The dotted
rectangle represent the field of view. Reconstructed slices are located evenly in this
area.

For each ray going through a given voxel, there is a complementary (or con-
jugate) ray intersecting that same voxel. Complementary ray pairs lie on the
same line in the axial plane but have opposite direction. They belong to dif-
ferent detector positions. In parallel geometry, the angle between a ray and its
complementary are exactly 180◦.

Short-scan algorithms do not have data from all views. This missing data can
be recovered from complementary rays. If all view data can be recovered, than
the short-scan yields the same result as a full-scan. Otherwise artifacts appear
due to missing data. In a full-scan, each voxel is projected to each view. Short-
scan algorithms must use weighting to compensate for the different number of
rays going through each voxel.

(a) slice #1 (b) slice #8

Fig. 4. Reconstructed slices of the Catphan phantom using FDK with normalization.
Figure 4a shows the outermost slice (#1), 4b shows the slice closest to the center
((#8)). Heavy cone-beam artifacts are visible on the first image. Notice the artifacts
below the patient table and the dark aura around the phantom.

The original FDK algorithm is a full-scan algorithm. In Figure 3 the high-
lighted area contains voxels visible from all source positions. If the source moves
on a circle, we get a double cone, which is the intersection of all rotated view
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cones. Voxels are fully illuminated inside this volume. Outside of the cone, var-
ious artifacts appear. This means, that the reconstructible area is less than the
depth of the detector along the z axis. In case of human cameras, one may need
a detector twice as large as the desired FOV.

However, given the above observations, it is obvious that less than 360◦ view
coverage is necessary for successful reconstruction. Using partial scan weighting,
voxels visible from partial view coverage can be utilized.

A näıve weighting is achieved by counting the detector hits for every voxel
and divide the voxel by this value. The idea of this normalization comes from
equation (2). For voxels fully illuminated the integration goes from 0..2π. When
we discretize this integral, the voxel values are summed for every view and di-
vided by 2π and the number of views. However, when view data is only available
for a limited range, we only divide by the number of views contributing to that
voxel.

2.4 Tang’s method

Another problem of FDK is related to large cone angles. Consider a slice on
the edge of the transaxial field of view. A ray, with a relatively large cone an-
gle is travelling through multiple image slices. When a voxel inside our slice is
backprojected along the aforementioned ray, the value read from the detector
originates from a larger z range than our slice. This makes the image blurred
along the z axis.

(a) k = 0.5 (b) k = 2

Fig. 5. Reconstructed slices using Tang´s method. Figure 5a shows k = 0.5, where
most of the artifacts are visible. Figure 5b shows k = 2 with suppressed artifacts in
the center of the image.

The Tang´s method [11] examines complementary rays. It works with cone-
parallel geometry. The rays are first rebinned according to the 2D rebinning
equations (4), while the z coordinates remain untouched. If we disregard the z
axis, complementary and normal rays intersecting a voxel bear exactly the same
information. However, in 3D, these rays have a different cone angle, depending
of the voxel´s position. For example, a voxel, on the center of rotation, has rays
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with the same cone angle. A voxel further from the center of rotation has a ray
with smaller cone angle and a ray with a larger cone angle. It is clear, that the
voxel with the larger cone angle carry more invalid information, originated from
the outside of the slice.

The idea behind Tang´s method is to create a weighing based on the cone
angle of the ray. The method favors rays with small cone angles. If a ray has
no valid complementary ray (because the complementary ray would fall outside
of the detector) then it has a weight of 1. Otherwise the weight goes from 0
to 1 according to equation below. The method discards projection values so it
increases noise.

wTang(ξ, l) =
tank|l|(|ξc|)

tank|l|(|ξc|) + tank|l|(|ξ|)
(5)

The k is a user defined parameter, l is the distance from the source along
the z axis, ξ is the cone angle of the given voxel. ξc is the cone angle of the
complementary ray.

The value k|l| defines the sharpness of the transition between the full and
zero weights. The k|l| = 0 translates back to the original FDK as all the weights
are 0.5. When k|l| = 1 we get a smooth transition and good balance between
artifact reduction and noise. Larger values suppress more artifacts but increase
noise further.

2.5 xFDK

The extended FDK (xFDK) method [10] is very similar to Tang´s method. It
uses weighing and discards projection values, however the weighting is done in
voxel space. The idea behind the method is that voxels seen by less than 360◦

must be weighted by a partial scan weight.

(a) slice #1 (b) slice #8

Fig. 6. Reconstructed slice using xFDK method. Artifacts inside the phantom are
suppressed. However they are still visible near the edge of the slice (e.g. at the patient
bed).
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The algorithm finds the illumination range of each voxel. The data is first
rebinned to cone-parallel geometry. The illumination range is the interval of
paralell view angles, where the voxel´s projection is visible on the detector. The
voxels are transformed to polar coordinates, ϕ is the polar angle of the voxel.
According to [10], the voxel is fully illuminated when equation (6) and (7) are
true.

|β − ϕ| ≤ π

2
+ arcsin

RF − cz

r
(6)

c = cot γmax (7)

In equation (6), RF is the radius of the axial field of view. The value cz is
defined in eq. (7) and called demarcation line, which separates the illuminated
and not illuminated areas of the volume.

Now we can calculate the γ fan angle for a given β and ϕ:

γ = − arctan
r sin (β − ϕ)

Rf + r cos (β − ϕ)]
(8)

By using equations (4)(6)(7)(8), we can derive a condition for θ, which gives
the illumination range:

[ϕ− π/2−∆θ, ϕ+ π/2 +∆θ] (9)

For θ values outside this range, a weight of 0 is used. Inside the range the
weight should be 2. This means that visible voxels are double weighted and
voxels not visible are ignored. Now for voxels at the edge of the valid θ range, a
smooth sinusoid transition is introduced (see eq. 10). The transition is ∆θ wide.
For the exact method of weighting see table 1.

s(t) = sin (πt/2) (10)

The weighting uses the observation, that voxels at the end of the illumination
range have larger cone angles as they are located closer to the detector and their
projections are towards the edge of the detector. Voxels in the middle of the θ
range are further away from the detector and have smaller cone angles.

Table 1. xFDK partial scan weights. s(t) is the smoothing function.

wPS Condition

0 θ < ϕ− π/2−∆θ

1 + s( θ−ϕ−π/2
∆θ

) θ < ϕ− π/2 +∆θ

2 θ < ϕ+ π/2−∆θ

1− s( θ−ϕ−π/2
∆θ

) θ < ϕ+ π/2 +∆θ

0 otherwise
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Note, that the above weighting is only applied to voxels outside the fully
illuminated range. Inside that range, a constant 0.5 full-scan weight is applied.
Between the two weights, another smooth transition is introduced based on the
voxels location in the axial plane.

One of the advantages of the xFDK method is that no user dependent pa-
rameter is introduced. However one can replace the s() function which has a
similar effect as the k parameter of the Tang´s algorithm.

3 Implementation

The reconstruction framework is written in C++ and CUDA. We use CUDA
4.2 and our target architecture is CM 2.0. The framework consists of device
data structures, samplers, error handling, wrappers for kernel launches and a
collection of reconstruction classes and kernels.

The input projections are wrapped into a custom datastructure containing
geometry descriptors and view headers. This data is dumped from the CT device
or generated by our forward projector. The forward projector itself works with
raw phantom data generated using Matlab4.

Frequency domain filtering is done on the device. FFT is calculated using
the NVIDIA CUDA Fast Fourier Transform library5 (cuFFT). The framework
supports classical filters like ramp or cosine and is able to load custom filters
from an external file.

The voxel driven backprojector uses a matrix transformation to calculate the
voxels position on the detector. It calculates the cone and fan angle of the given
voxel, which is then transformed to texture coordinates. The detector model is
represented by a class with device members and passed to the reconstruction
engine as a template parameter, so it can be easily replaced.

The pixel driven forward and backprojector use a simple 3D line drawing
algorithm. It calculates ray-voxel intersection lengths and weights voxel or de-
tector values along the ray. The ray directions are calculated by transforming
the detector pixels to a virtual detector in voxel space. The whole projection
algorithm runs on the GPU.

4 Measurements

4.1 Materials and methods

To evaluate the accuracy of a CT system, a comprehensive test study is needed.
We used mathematical and physical phantoms along with real clinical scans for
testing.

4 http://www.mathworks.com/products/matlab/
5 https://developer.nvidia.com/cufft
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(a) FDK #14 (b) FDK #15 (c) FDK #16

(d) Norm. FDK #14 (e) Norm. FDK #15 (f) Norm. FDK #16

(g) Tang #14 (h) Tang #15 (i) Tang #16

(j) xFDK #14 (k) xFDK #15 (l) xFDK #16

Fig. 7. Comparison of FDK, normalized FDK, Tang and xFDK methods (from top to
bottom). The slices presented in each row mostly contain partially illuminated voxels.
All images have the same window and level setting.
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We created simulated phantoms to ensure the consistency between our back
and forward projector. These phantoms were generated with Matlab and for-
ward projected with our GPU based forward projector. We also used real mea-
surements of the The Catphan 6006 phantom, which is a widely accepted tool,
designed for characterizing CT performance.

4.2 Artifact analysis

We used the Catphan 600 phantom to evaluate artifacts. The original FDK
method has artifacts on slices outside of the fully illuminated area. These arti-
facts include object breaking up (patient table in Figure 4a), blurring and dif-
ferent high and low intensity patches (see Figure 7b,c and Figure 7e) and rapid
intensity drop near the edges (Figure 8a). The fully illuminated area shows no
visible artifacts (Fig. 4b).

(a) (b)

Fig. 8. Intensity drop near the edge of the reconstructed phantom using various meth-
ods. Fig. 8a: FDK, normalized FDK, xFDK Fig. 8b: Tang’s method, xFDK. The al-
gorithms are compared to a reference slice inside the fully illuminated area. In Fig. 8b
the values are truncated to the center of the phantom for better visibility.

Figure 7 shows a comparison of the different algorithms. The first row (in
Fig. 7a-c) shows the original FDK algorithm. A huge intensity drop is visible
on the two outermost slices (Fig. 7b,c). The second row (in Fig. 7d-f) shows the
effect of the normalization. The intensity drop is less prominent. The last two
rows show the results of the Tang (g-i) and xFDK (j-l) methods.

Extended algorithms eliminates all artifacts on slice 14 as seen in Figure
7a,g,j. The xFDK method has the less visible artifacts on slice 15 (Fig. 7k).
Slice 16, which is the furthest from the center shows visible artifacts using all
methods, however they are less prominent using the extended methods.

The intensity drop is visualized as a line plot across the outermost slice in
Figure 8a. By FDK the attenuation (µ) values drop by 50%, from 0.02 to 0.01.

6 The Phantom Laboratories Inc.
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Using normalization, the drop is less, the values stay above 0.015. xFDK elimi-
nates the drop near the center of the image. The xFDK and Tang’s method are
compared in Figure 8b. It is seen that the xFDK method is better in eliminating
the intensity drop artifacts. Note that the drop almost completely disappeared
on all but the two outermost slices.

Both of the extended algorithms suppress artifacts near the center of the slice
(see the last two rows in Figure 7). This is happening because more views are
available for voxels on that area. Near the edge of the slice, the algorithms are
unable to suppress artifacts as the ray illumination range of the voxels are less
than specified in equation (3).

As a conclusion to this section we saw that both extended methods efficiently
reduce artifacts on all but the two outermost slices. The fully illuminated area
covers the 8 middle slices out of the total 16 (Figure 3). These 8 slices are
reconstructible using FDK. Using the extended methods, the artifact free recon-
struction of 3 more slices on each side is possible, resulting a total number of 14
slices.

4.3 Speed and running time

For slices inside the fully illumination range it is not necessary to use the ex-
tended algorithms. It is possible to use the original FDK method for these slices.
The extended weights only need to be calculated outside the double cone shown
in Figure 3, which reduces reconstruction time.

Table 2. Total running time of the backprojection kernel for different methods. The
tests were executed on a Geforce GTX 580 graphics card.

method 1 sample 8 samples
(s) (s)

FDK 1.42 5.33

Tang 1.94 9.74

xFDK 2.45 12.61

Tang 1-4,13-16 1.75 7.85

xFDK 1-4,13-16 1.98 9.44

Tang (double)) 10.29 79.27

The execution time of various methods are compared in Table 2. The table
shows the summed amount of backprojection kernel execution time for 960 views.
Using 8 samples per voxel the Tang and the xFDK methods are respectively 1.8
and 2.5 times slower than FDK. By calculating weights only for slices 1− 4 and
13− 16, these numbers are reduced to about 1.5 and 1.8.

Note the last row in Table 2 which shows Tang’s method with parameter
k|l| = 5. Equation 5 requires double precision when the k|l| parameter goes above
2.2. Normally, all calculations in this article are implemented using single float
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precision, because of the performance impact of doubles on the GPU. The use
of doubles in the Tang algorithm introduces a serious 5× performance penalty,
making the method unfavorable. If performance is an issue, then Tang’s method
with k|l| = 2 can be used, which is faster than xFDK. However the artifact
suppression is less sufficient in this case. Where not noted differently, all results
of Tang’s method have parameter k|l| = 2.

4.4 Noise measurements

We made noise measurements using simulated water phantoms and scans of
the Catphan phantom. In this section, we present our measurements using the
Catphan phantom. We made measurements on multiple slices of the phantom
to observe the effect of different artifacts. We used 8 samples per voxel for all
results in this section.

Table 3. Noise measurements on slice #1, which is the outermost slice.

Slice 1 Air Water

Method Mean (HU) Noise (HU) Mean (HU) Noise (HU)

FDK -1050.95 44.20 -351.57 103.84

FDK NORM -1081.48 62.21 -75.40 57.34

xFDK -1045.66 22.45 -11.55 46.80

Tang (k=2) -1035.76 17.60 -49.72 42.84

Tang (k=5) -1041.15 18.19 -27.78 47.08

Tang (k=10) -1042.22 18.63 -21.71 47.24

Table 3 shows our measurement of slice 1. It is clearly seen that all algorithms
suffer from the intensity drop. Noise is also high due to various artifacts. These
results show that even the extended methods are not able to suppress all artifacts
in the outermost slice.

Table 4. Noise measurements on the third slice.

Slice 3 Air Water

Method Mean (HU) Noise (HU) Mean (HU) Noise (HU)

FDK -1016.98 28.17 -8.74 29.50

FDK NORM -1013.90 24.40 -7.71 29.82

xFDK -1042.79 17.47 -12.61 30.60

Tang (k=2) -1026.42 19.33 -15.12 41.38

Tang (k=5) -1023.93 18.80 -15.98 45.17

Tang (k=10) -1023.74 18.91 -12.29 46.27
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On slice 3 most of the artifacts fall outside of the measured water area which
fills the middle of the slice (see Table 4). The intensity drop is clearly less, but
still visible. Interestingly, the drop is higher for the extended methods. Noise
levels are nearly the same. In the case of FDK, the noise in the air area is larger
than expected due to the artifacts still prominent near the edge of the slice.

Table 5. Noise measurements on the fifth slice.

Slice 5 Air Water

Method Mean (HU) Noise (HU) Mean (HU) Noise (HU)

FDK -1006.70 14.80 -8.01 29.83

FDK NORM -1006.80 14.84 -7.02 29.78

xFDK -1006.41 14.66 -8.15 29.71

Tang (k=2) -1026.38 17.45 -14.67 38.29

Tang (k=5) -1023.83 18.51 -13.32 44.17

Tang (k=10) -1022.95 18.51 -10.41 45.99

Table 5 shows measurement data from slice 5. This slice is closer to the source,
so artifacts are less prominent and only appear near the very edge of the slice.
As expected the intensity drop of FDK is not noticeable and nearly the same for
all methods. The noise is overall small as well. The extended methods (especially
the Tang´s method) show increased noise compared to FDK. This is because the
dropped views based on cone angle. To counter this effect, the extended methods
should only be used in the region where artifacts are prominent (see 4.2).

Note that regardless of the k|l| parameter, the mean values of Tang’s method
are lower compared to other methods. On the fifth slice this effect is still present.
By increasing the k|l| parameter more artifacts are suppressed and the mean
values are getting closer to the expected value with a slight increase of noise.

5 Conclusion

We presented our GPU-based 3D CT reconstruction framework. We imple-
mented the FDK, xFDK and Tang´s algorithm and compared them, regarding
visible artifacts and noise.

The original FDK method has a limited field of view in the z direction. Using
xFDK or Tang´s method it was possible to extend the reconstruction range from
8 to 14 slices. However visible artifacts remain in off-center areas on the outer
slices and they need to be further reduced on the two outermost slice to fully
utilize the coverage of the detector.

Extended methods require longer reconstruction time. In our framework, we
only calculate partial scan weights for slices where it is necessary. With this opti-
mization the increase of execution time is justified by the extended FOV offered
by the algorithms. A further optimization is possible by only calculating the
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extended weights in each voxel when the voxel is outside of the fully illuminated
double cone. This would increase reconstruction speed of partially illuminated
slices.

An important question is which method to use in a practical implementation.
In our study, the xFDK method proved several advantages over Tang’s method
in terms of speed and usability. The xFDK method is more robust as it has no
adjustable parameter and it is more efficient when implemented on the GPU
using float precision.
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