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Abstract. Machine learning can be used in Discrete Tomography as
a preprocessing step in order to choose the proper reconstruction al-
gorithm or – with the aid of the knowledge acquired – to improve its
accuracy. In this paper we investigate for a well-known machine learn-
ing method, namely the artificial neural network, how it’s able to obtain
certain geometrical features from discrete images and classify those im-
ages accordingly. As an example, we present results when the task is to
distinguish between images of different classes, to determine the number
of different intensity levels present in the discrete image, and to estimate
the perimeter of simple and more complex discrete sets from their hori-
zontal and vertical projections. The information extracted this way can
be useful to simplify the problem of reconstructing the discrete set from
its projections, which task is in focus of Discrete Tomography.
Keywords Discrete Tomography, Machine Learning, Artificial Neural
Network, Geometrical Features, Gray-Level Estimation, Perimeter Esti-
mation.

1 Introduction

The aim of Computerized Tomography (CT) is to reveal information about the
inner structure of given objects without damaging or destroying them. Methods
of CT (like filtered backprojection, algebraic reconstruction techniques) usually
require several hundreds of projections to obtain an accurate enough reconstruc-
tion of the studied object [19, 23]. Since the projections are usually produced by
X-ray, gamma-ray, or neutron imaging, the acquisition of them can be quite ex-
pensive, time-consuming or even might (partially or fully) damage the examined
object. Therefore, in many applications it is impossible to apply reconstruction
methods of CT effectively. In those cases there is still a hope to get a satisfactory
reconstruction results by using Discrete Tomography (DT) [20, 21].

In DT we assume that the object to be reconstructed is composed of a few
materials known beforehand. By utilizing this extra information it is often pos-
sible to get accurate reconstructions even from a small number of projections

⋆ The present paper summarizes the contents of previously published results [16,17,25].
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(say, 2-10). Applications of DT therefore is crucial in the field of industrial
non-destructive testing [10] and electronmicroscopy [6]. Very recently, with a
technique of DT, the authors of [27] were able to investigate the 3D structure of
crystalline nanoparticles on the atomic scale.

Unfortunately, the reconstruction task in DT is usually extremely undeter-
mined, i.e., there can be many different solutions with the same projections. A
common way to reduce the number of possible solutions is to assume that the
image to be reconstructed has some additional (geometrical or more complex
structural) features. There are several reconstruction algorithms in DT working
in different classes of discrete images defined by certain geometrical or topolog-
ical properties. For example various kinds of convexity and connectedness are
examined in [2–4, 11–13]. In most cases these geometrical properties of discrete
images are expected to be given explicitly, but in reality, this information might
not be available prior to reconstruction. However, few efforts have been made
to study how these features can be extracted before the reconstruction solely
from the projections, if they are not explicitly given [16, 25, 17]. In this paper,
a summary of the latter results is given, to prove that it is possible to retrieve
different structural properties from certain classes of discrete images by using
the projection data only.

Artificial Intelligence (AI) has an extremely broad range of tools for data
mining. Surprisingly, up to now, in discrete tomography only a few of them have
been used, and only for certain purposes. Methods of AI were mostly used in the
reconstruction process itself, like in [7], where Neural Networks and in [5, 26],
where Genetic Algorithms were successfully applied. However, reconstruction
tasks performed this way usually require extensive computational time, hence
the benefits of using these complex tools are not displayed in these cases. We in-
vestigate for the former neural networks how they perform in classifying images
that differ in certain geometrical features, like connectedness, convexity, number
of gray-intensity levels, and the perimeter. Recently, some authors have con-
sidered the problem of reconstructing discrete sets with minimal or predefined
perimeter, and related problems [9, 14, 15, 22]. However, all those reconstruction
methods assume that the perimeter is given a priori. This paper also shows how
prior information of the perimeter can be extracted by using neural networks, if
it is not given beforehand.

The structure of the paper is the following. First, the necessary definitions
and notations are introduced in Section 2. Section 3 gives an overview of machine
learning, the theory behind neural networks and the implementation strategies
that were chosen. In Section 4 we present neural networks that are able to sep-
arate 8-, but not 4-connected hv-convex discrete sets from hv-convex polyomi-
noes. In Section 5 we investigate an important problem of discrete tomography,
namely, the identification of the number of gray-intensity values that can be
present in the image. In Section 6 we present results of estimating the perime-
ter from the horizontal and vertical projections, first for simpler, then for more
complex discrete sets. Finally, Section 7 is for the conclusion.
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Fig. 1. An hv-convex 8- but not 4-connected discrete set represented by its elements
(left) and by a binary matrix (center), and the corresponding binary image (right).

2 Preliminaries

The finite subsets of the two-dimensional integer lattice are called discrete sets.
A discrete set is defined up to a translation and it can be represented by a binary
matrix or a binary image as well (see Fig. 1). The horizontal and the vertical

projections of a discrete set F are defined by the vectors H(F ) = (h1, . . . , hm),
V(F ) = (v1, . . . , vn), respectively, where hi =

∑n
j=1 fij (i = 1, . . . ,m), and

vj =
∑m

i=1 fij (j = 1, . . . , n). For example, for the discrete set F in Fig. 1
H(F ) = (2, 3, 3, 2, 3, 2), V(F ) = (1, 3, 4, 2, 1, 2, 2).

Two positions P = (p1, p2) and Q = (q1, q2) in a discrete set are said to
be 4-adjacent (8-adjacent) if |p1 − q1| + |p2 − q2| = 1 (|p1 − q1| + |p2 − q2| ≤
2), respectively. The discrete set F is called 4-connected (8-connected) if for
any two positions P,Q ∈ F there exists a sequence of distinct positions P0 =
P, . . . , Pk = Q in the discrete set F such that Pl is 4-adjacent (8-adjacent) to
Pl−1, respectively, for each l = 1, . . . , k. The 4-connected discrete sets are also
called polyominoes. From the above definitions it follows that every 4-connected
discrete set is 8-connected as well, but the counterpart is not always true. The
discrete set F is hv-convex if all the rows and columns of F are 4-connected.
Figure 1 shows an hv-convex 8-connected but not 4-connected discrete set.

The perimeter of a discrete set F of size m× n is defined by
∑

(i,j)∈{0,...,m}×{0,...,n}

|fij − fi,j+1|+ |fij − fi+1,j | , (1)

with the convention that fij = 0 whenever i = 0, j = 0, i = m+ 1 or j = n+ 1.
For example, the perimeter of the discrete set of Fig. 1 is equal to 26. Note that
the perimeter of an hv-convex discrete set is always determined by its size (and
then, of course, by its projections, too). Namely, every hv-convex discrete set of
size m× n has a perimeter of 2(m+ n). Moreover, it is also easy to see, that it
is the minimal possible perimeter value among discrete sets of size m× n.

In the reconstruction task, a class G of discrete sets is defined, and the vec-
tors H and V are given. The goal is construct a discrete set F ∈ G such that
H(F ) = H , V(F ) = V are satisfied. Throughout the presented experiments in
this paper, we used only the horizontal and vertical projections to try to re-
trieve the mentioned features of the test images. Due to the small number of
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projections the reconstruction task is usually extremely underdetermined and
for certain classes, NP-hard as well. For example Fig. 2 shows two different dis-
crete sets with the same horizontal and vertical projections. Therefore every
information available before the reconstruction could provide help in increasing
accuracy, and speeding up the process. In the last 15-20 years several recon-
struction methods have been developed for certain classes of discrete sets, all
of them using some prior knowledge of the image to be reconstructed. Some of
them performs the reconstruction directly, while others reformulate the task to
a global optimization problem. However, it is always supposed that the prior
information is given explicitly. Even in this case, it is a hard work to fine-tune
the parameters of the global optimizer (e.g. simulated annealing or genetic al-
gorithms) to obtain good reconstructions. Up to now, no methods are known
to choose the appropriate reconstruction algorithm (or to set its parameters)
automatically, if the prior information is not known in advance. In the following
we take an attempt to use learning methods, like neural networks, to solve this
problem.

For the task of estimating the number of distinct gray-level intensities in
a discrete image, obviously only binary images would not have been enough
to test our method, and determine that our approach performes well. Hence,
in addition to the various types of binary images generated for each problem
defined, specifically for Section 5, several series of discrete images have been
created. These images have a defined number of disks, with fix positions and fix
sizes, and only differ in the gray-intensities of the disks. Such an image can be
seen in Fig. 3. Note that formulation the horizontal and vertical projections do
not differ from that of the binary case, the only difference is that fij can not
only be 0 or 1, but it can be any of the finite number of intensities in between
those two extremal values.

Fig. 2. Discrete sets having the same horizontal and vertical projections, but different
perimeters.
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Fig. 3. A discrete image and its horizontal and vertical projections (from left to right,
respectively).

3 Machine Learning

3.1 Basics of Neural Network Theory

A multilayer neural network (NN, in short) consists of units called neurons ar-
ranged in separate layers. Neurons pass information to each other via directed
links. Each of these directed connections, i.e. from neuron j to neuron i, trans-
mits an activation value aj of the sending neuron with a weight Wj,i attached
to it. In a feed-forward neural network, a neuron that belongs to a certain layer
can receive input only from neurons in the preceding layer. After computing the
weighted sum of its inputs ini =

∑
Wj,iaj, the neuron passes this value to an

activation function g of its own, which calculates the output ai = g(ini). The
result is then forwarded to neurons in the next layer. Basically one could view
a feed-forward multilayered network architecture as a directed, weighted graph,
where the information flows in the same direction from layer to layer. A simple,
three layer architecture is shown in Fig. 4. Such a system with one hidden layer
in the middle holding a sufficient number u of units is able to represent any
continuous function of its input, thus is chosen for our experiments.

The training of the network is done with the aid of a training set of samples.
Each sample and the desired output as a pair serves as a single input pattern for
the network. A run through all the training samples is called an epoch, normally it
takes several epochs for the network to learn the target function. By propagating
the input through the network, then comparing the network’s output with the
target value corresponding to the sample, the error is measured. Weights of
the connections responsible for the error are slightly adjusted with each visited
sample. Updating the weights of links between the hidden and the output layer
is rather straightforward: Wj,i = Wj,i + αaj∆i, where ∆i = Errig

′(ini) and
Erri is the error of output unit i. The learning rate α determines the degree of
the modification to be made to a weight after evaluating the error on a single
training sample. For updating the weights of links in between the input and the
hidden layer (Wk,j), the well-known backpropagation method is used [24]. The
aim is to minimize the error on the entire training set, therefore the training
is a search through the weight space to find a setting with a minimal sum of
squared errors on the training data. The assumption is that the obtained setting
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Fig. 4. A basic feed-forward neural network with one hidden layer. In case the discrete
set is of size m×n the horizontal and vertical projecions form a vector of length m+n,
hence the input layer itself contains m+ n units. The hidden layer consists of u units,
while the output layer is only one neuron. Wk,j and Wj,i denote the weights for each
connection between the input and the hidden layer, and between the hidden and the
output layer, respectively. The range of the indices are: k = 1, . . . ,m+n; j = 1, . . . , u;
i = 1.

will provide the best performance on an unseen set of samples as well, given that
both originate from the same distribution.

One of the unseen set of samples is the generalization set, that contains pat-
terns that will be used to measure the accuracy of the network on unseen data
after every epoch. Patterns in the validation set will be run through the network
after one of the terminating conditions for the training process is satisfied, so
this is basically a final check of the networks ability how it handles unseen input
patterns. The classic split between these three sets is 60%− 20%− 20%, respec-
tively. For the largest portion, the training dataset, advanced data partitioning
methods exist which enable further partitioning of this subset into smaller parts.
The growing dataset approach trains the network with a growing subset of the
training set which would increase with a given fixed percentage after every epoch
until it contains all the samples in the training set.

A technique called momentum is also used to speed up the training process.
An update of a certain weight of a connection is based on the previous update
made on the same connection. It is favorable that the direction (+/-) of the
previous modification is preserved, since the network is more likely to generalize
better this way. In case the current weight update specified by the output error is
in the opposite direction as the previous, the momentum constant β also makes
sure that a step in a new direction is a small, initial one. The resulting formulas
for weight updates are the following:
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Wj,i = Wj,i +∆Wj,i(t)

∆Wj,i(t) = αaj∆i + β∆Wj,i(t− 1),
(2)

and

Wk,j = Wk,j +∆Wk,j(t)

∆Wk,j(t) = αak∆j + β∆Wk,j(t− 1).
(3)

As mentioned earlier, conditions need to be defined when to terminate the
training of the network. The training can be stopped once a maximum number
of epochs is reached, this option is useful in cases when the network fails to
converge to a stable state. Accuracy can be measured too, both on the training
set (training set accuracy - TSA) and the generalization set (generalization set

accuracy - GSA). The former gives the number of correctly classified training
patterns divided by the the total number of training patterns, while the latter
gives the number of correctly classified patterns in the generalization set divided
by the total number of patterns in the generalization set.

In summary, the common structure of the NN’s used in our experiments are
the following. The network holds only one hidden layer to estimate the perimeter
of certain classes of discrete sets. Neurons in the input layer receive the horizontal
and vertical projection values, so their number is fixed by the size of discrete
sets under investigation. The output layer consists of a single output node which
gives the final estimated value we are looking for, like which class does the
image belong to, what is the estimated perimeter, and so on (see again Fig. 4).
Determining the number of hidden neurons to allocate is a rather difficult task.
Having too few causes lack of performance, on the other hand having too many
causes overfitting on the training data. For each and every one of the studied
problems, the optimized parameters of the networks are presented in a tabular
form.

3.2 Implementation of NN’s

Two different implementations have been chosen for our simple feed-forward
multilayer neural network, that possesses one hidden layer and utilizes back-
propagation learning, as described before. Initially, we decided to use the im-
plementation of [1]. This is a fairly easy to understand C++ implementation of
such networks, and it avoids the unnecessary object oriented design in this case.
Rather than modeling each neuron as an object and modeling the network as a
container for these objects, it uses several one- and two dimensional arrays to
store the activation values, the weights, the weight changes and the error gradi-
ents for all three layers, providing possibly the most efficient way to represent a
simple multilayer network. This form of implementation proved to be succesful
during the experiments shown in Section 4.

Later on, we decided to take advantage of other existing solutions as well,
such as the open-source WEKA framework [18]. WEKA offers several machine
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learning tools implemented in JAVA, encapsulated in a user friendly GUI that
enables users to set various parameters. Among those tools is the class named
Multilayer Perceptron. This is a realization of a multilayer feed-forward network
with back-propagation learning, aided by the momentum technique.

We describe a few properties of both of the implementations here in more
detail:

– The activation function, by default, for every neuron is the sigmoid function

P (t) = 1/(1 + e−t).
– Throughout our experiments we used networks with a single hidden layer to

connect the input and output layers, only changing the number of hidden
units in that particular layer when needed.

– The initial weights for all links between neurons in adjacent, separate layers
were randomly set to uniformly distributed values in the interval of [-0.5,
-0.5] and [-0.05, +0.05], respectively, for the two implementations.

Table 1. The parameters of the neural network and the precision of the classification for
the datasets of hv-convex polyominoes and hv-convex 8- but not 4-connected discrete
sets. In all test cases β = 0.9 and the number of train and test samples were 1800 and
600, respectively. For the size of the squared matrices only one dimension is given.

Size Epoch Nr. Hidden α VSA Error

10 50000 30 10−4 78.6667 21.3333

50 50000 120 10−3
→ · · · → 10−6 85.5556 14.4444

100 10000 200 10−3
→ · · · → 10−7 88.8889 11.1111

150 7500 250 10−3
→ · · · → 10−7 92.6667 7.3333

200 5000 300 10−3
→ · · · → 10−7 94.9444 5.0556

4 Classification of hv-Convex Polyominoes and

hv-Convex 8-, but not 4-Connected Discrete Sets

Interestingly the reconstruction of hv-convex 8- but not 4-connected discrete sets
can be performed faster than the reconstruction of hv-convex polyominoes [2].
For this to happen we need a method to decide which of the earlier mentioned
two classes does the discrete set belong to. The evident approach so far was to
apply the faster algorithm for reconstructing hv-convex 8- but not 4-connected
sets, if the outcome is failure then the discrete set is a hv-convex polyomino and
the other algorithm has to be used for reconstruction. If we could answer this
question prior to using any reconstruction methods, that information would help
to choose the appropriate reconstruction process.

We generated 8-, but not 4-connected discrete sets by generating 8-connected
sets [3] and discarding the 8-connected sets which were also 4-connected from the
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bunch. We used 1800 training and 600 test samples for all sizes of matrices. All
of our datasets contained 50-50% of the investigated classes. We calculated the
error as the percentage of incorrectly classified samples over the number of total
samples. This is easily obtained from the validation set accuracy as 100−VSA.

During this task we tried the growing dataset method, which turned out to
be successful. Initially we took a subset of 360 training samples, and we increased
this subset with a fixed percentage after every completed epoch. This way we
managed to keep the values of TSA and GSA relatively closer to each other than
in other tasks before (see [16] for further details). This feature, and the fact that
this problem suited neural networks well, resulted in low error percentages in
the validation set, as seen in Table 1 and Fig. 5.

15

20

25

0

5

10

10 50 100 150 200

Fig. 5. Average error of classification of hv-convex polyominoes and hv-convex 8-, but
not 4-connected discrete sets in percentage (vertical axis) as it depends on the size of
the matrix (horizontal axis, only one dimension of the size of the squared matrices is
given) by using decision trees (�) and neural networks (◦).

5 Determining the Number of Distinct Intensity Levels

in Discrete Images

Discrete tomography utilizes the strong assumption that the image to be recon-
structed contains just a few gray-intensity values that are known beforehand.
Determining the intensity levels is seemingly one of the most difficult problems
in discrete tomography. In [10] the authors suggested to reconstruct the discrete
image with many intensity levels, and then to perform a second reconstruction
with the gray-intensity values defined by the peaks of the histogram of the im-
age obtained in the previous reconstruction. In [8] a semi-automatic method was
proposed to select the intensity values. However, up to now, no general method
is known to solve this task. In this section we investigate a closely related prob-
lem. We study how machine learning can be used for determining the number
of intensity values present in the discrete image, at least for a restricted class of
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images. For neural networks we use the aforementioned Multilayer Perceptron
of the WEKA toolbox [18].

5.1 Generated Datasets

In the experiments we used the horizontal and vertical projections, thus the at-
tributes of each learning instance were the values of those two projections. In the
following we will call a set of disks with fixed size and position as a configura-

tion. That is, instances of the same configuration differ only in the gray-intensity
values used in the image. We performed the classification with 10 different config-
uration for neural networks. Each configuration contained 8 randomly generated
disjoint disks with fix positions and equal – at least 5 unit long – radius for
that particular configuration (for an example see again Fig. 3). For classification
purposes the generated training and testing datasets contained 3600 and 1200
images, respectively, for every configuration. Beside the background intensity
(that was 0 in every case), futher intensities of the disks were randomly chosen
from a given intensity list. The lists that were used contained equidistant points
in [0, 1] defining the grayscale values.

5.2 Experimental Results

In our experiments we used two types of error measurement. The first one is the
common, strict method to calculate classification errors: each misclassification is
treated as an error. In this case only the diagonal elements of the classification
matrix belong to the correctly classified cases (dark gray elements of Table 2).
Hereunder we call this method the normal error measurement. The second one
is a more permissive type of measure. In this case if the difference between the
output of the classifier and the exact number of distinct intensities is not greater
than 1, the result is accepted. For example for a given image with 4 different
intensity values, outputs 3, 4, and 5 are all treated as correct classifications (none
of the gray elements of Table 2 are misclassifications).

Table 2 shows the average of the 10 acquired classification matrices for neural
networks on classifying images with 1-6 distinct intensity levels. The dark gray
elements represent the good classifications in normal measurement, while during
the permissive measurement mode every case that corresponds to a gray-shaded
element in a row is accepted as a correct classification.

We also investigated the robustness of the presented methods by performing
the same experiments but this time with noisy projection data. In these tests
we used additive noise with uniform distribution with a noise ratio of 5%. Com-
prehensive results are shown in 6. With NN’s we attempted to distinguish 3 to
6 different intensity levels at once (as seen in Fig. 6). The main reason behind
the reduction in the latter case was the extremely long training time. Finding
the proper weights of neural networks proved to be cumbersome. Nevertheless,
practical applications of discrete tomography usually involve no more than 4 or
5 intensity levels.
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Table 2. The average of 10 classification matrices of all configurations for neural
networks for 1-6 equidistant intensity values. The numbers in brackets in the last
column represent the exact number of intensities actually in the image, while in the
first row the estimated number of intensities by the machine learning method is shown.
Matrix entries are given in percentage (rounded to two digits) of the test cases for each
number of intensities.

(a) Neural network

(1) (2) (3) (4) (5) (6) ← classified as
100.00 0.00 0.00 0.00 0.00 0.00 (1)
0.00 98.90 1.00 0.10 0.00 0.00 (2)
0.20 2.30 91.85 4.20 0.85 0.60 (3)
0.00 0.75 3.10 75.90 12.35 7.90 (4)
0.00 0.00 0.70 3.90 95.40 0.00 (5)
0.00 0.00 0.00 0.00 0.00 100.00 (6)

(a) Noiseless (b) With 5% noise

Fig. 6. Classification error of the neural networks depending on the number of differ-
ent intensity levels in the image without (a) and with (b) noise. For each number of
intensities the plotted bars represent the average error for equidistant intensity values
with normal (gray) and permissive (black) error measurement.

On the other hand, neural networks accomplished the task surprisingly well.
This is probably due to the various parameters available to configure the method
in an optimal way. Careful adjustments of these variables – such as learning rate,
momentum, etc. – can lead to better classification results. To find the parameters
close to the best possible we tested several settings for each dataset. By modifying
one parameter at once, and observing its effect on the classification result on the
training data, we tried to keep track of each parameters optimal direction of
change. This way in some cases a clear pattern has been found how to set up
the network properly. The average of used parameter setups are displayed in
Table 3. α is usually decreased as the training goes on, and this learning rate
decay in this implementation is achieved by dividing the learning rate after each
epoch by the number of epochs completed so far. Thus, Table 3 contains the
averages of the initially set learning rates. The momentum, on the other hand,
did not change during training.
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Table 3. Average values of the parameters of the neural network classification.

Noiseless

#intensities Learning rate Momentum Training time Hidden neurons
3 0.2 0.8 100 10.5
4 0.24 0.78 190 16
5 0.27 0.75 370 41
6 0.238 0.8275 530 55.5

5% Noise

#intensities Learning rate Momentum Training time Hidden neurons
3 0.2 0.8 100 10
4 0.3 0.8 200 20
5 0.27 0.75 740 41
6 0.2218 0.8275 133 54

We drew the conclusion from our experiments on neural networks that we
had to increase the number of hidden neurons as the number of intensities in-
creased. In the noiseless case increasing the training time (number of epochs)
provided better results. On the noisy dataset longer training time gave worse re-
sults, probably because the network tended to overfit the given training samples,
therefore it was not be able to generalize as well as expected.

6 Perimeter Estimation of Some Discrete Sets

6.1 Methods for Generating Test Images

For investigating how well NN’s can estimate the perimeter of some simple and
also more complex discrete sets, we needed methods to generate discrete sets
for this purpose. For images having relatively simple structure, we decided to
choose the class of h-convex discrete sets. Elements of that class were generated
in the following way. In each row of the h-convex discrete set, we put exactly
one sequence of consecutive 1s. If the size of the discrete set is m × n, then
the length of the sequence can vary between 1 and n. A sequence of length
k ∈ {1, . . . , n} can start at n−k+1 different positions of the row. Therefore, the
probabilty that the generated sequence for a single row is of length k was set to
n−k+1

n(n+1)/2 . Once the length of the sequence was determined, we defined its starting

position simply by picking a random integer from the interval [1, n−k+1] using
a uniform distribution. Notice that the size of the discrete set produced this
way is not necessarily m × n, it may be less, as the vertical projection of the
discrete set can contain zero values, sometimes even as the first or/and the last
coordinate. However, we found that it occured in just an insignificant number
of the cases, and in the following we neglect this phenomenon. Note also that a
similar method can be applied to generate v-convex discrete sets, too.

In order to obtain discrete sets with more complex structure, we combined h-
convex and v-convex discrete sets, by taking the union of them. Formally, using
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the correspondig representing matrices, such a matrix M can be calculated as
mi,j = max(bi,j , ci,j) where B and C is a randomly generated h-convex (v-
convex) matrix, respectively. Figure 7 shows an h-convex and a v-convex set,
and a discrete set generated from these two sets in the abovementioned way. For
the sake of simplicity, in the followings we will refer to this class of discrete sets
as random discrete sets.

Fig. 7. Example of generating a random discrete set (middle) as a combination of an
h-convex (left) and a v-convex (right) discrete set.

First we attempted to find the optimal settings for the perimeter estimation
of h-convex discrete sets. The training set and the test set included 1500 and 300
samples, respectively. We have experimented with different splittings and ratios
– 1600 training- and 300 test samples; 2000 training- and 500 test samples; etc.
– but none of these changes had any significant, let alone positive effect on the
network’s performance. After careful experimenting the following parameters
were found to be the best: learning rate α was set to 0.001, momentum β was
set to 0.3, and the number u of hidden neurons used is presented in Table 4.
Although β = 0.3 is an unusually low value for the momentum, it assured the
most stable results. Table 4 shows that the number of hidden units somewhat
increased along with the size of the sets investigated, with only a few exceptions.
For estimating the perimeter of random discrete sets, the setup only differed in
the required number of units in the hidden layer, this is also presented in Table 4.

Table 4. Number of hidden neurons used for the perimeter estimation of h-convex and
random discrete sets, depending on the size of the sets.

Size 10 20 30 40 50 60 70 80 90 100

h-convex 20 40 40 40 50 70 80 60 70 80

random 10 30 35 45 50 45 50 55 60 60

6.2 Experimental Results

The estimation of the exact perimeter could be a very hard, in some cases even
impossible task, since two different discrete sets with different perimeters can

 
KÉPAF 2013 – a Képfeldolgozók és Alakfelismerők Társaságának 9. országos konferenciája 

 

 
 

206 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



have the same horizontal and vertical projections (see, e.g., Fig. 2). Thus, our
aim was to study the accuracy of the neural network in case some degree of

uncertainty is allowed. The following uncertainty levels were introduced: from
1% to 10%, and 20% difference from the actual perimeter of the given discrete
set presented in the test image.

Every test - defined by the allowed uncertainty and the size in question - was
repeated five times, and the end result is the average of these separate runs. The
final results for h-convex sets and randommatrices were quite similar and showed
the same trend. Actually, neural networks provided slightly better results for
estimating the perimeter of random discrete sets, therefore results for h-convex
sets were omitted from this section. Fewer hidden neurons were sufficient for
this class (see Table 4) and the number of these hidden units increased more
or less steadily with the size in this case, making this a noticeably easier task
for the network than estimating the perimeter of h-convex sets. For example,
by allowing a 10% deviation from the exact perimeter for random sets of size
100×100 the network mispredicted the perimeter of only 0.2% of all test samples.
In the same test configuration, with an allowed uncertainty of 10%, the error
is about 3.0% for h-convex discrete sets of size 100×100. Considering that one
could obtain this information from merely two projections, it can prove to be a
useful result for practical application purposes.

Table 5. Perimeter estimation of random discrete sets from size 10 × 10 to 100 ×
100. The leftmost column indicates the allowed difference between the true and the
estimated perimeter. The entries show the average percentage of the misclassified test
data.

Uncertainty 10 20 30 40 50 60 70 80 90 100

1% 87.80 86.33 85.33 85.07 82.80 81.80 80.60 81.20 79.00 76.20

2% 77.40 73.40 70.20 68.87 67.53 62.13 61.40 61.47 59.80 56.13

3% 67.60 62.40 56.67 53.73 52.67 47.40 44.67 42.80 42.40 39.53

4% 57.07 51.07 45.33 41.93 37.20 33.80 31.20 30.80 28.47 24.27

5% 48.67 41.60 34.87 30.87 26.20 23.73 20.27 19.67 16.33 14.60

6% 40.47 31.33 26.40 21.67 16.13 14.13 13.47 11.33 9.87 7.33

7% 31.93 24.00 20.27 14.93 11.40 9.33 7.73 6.20 5.53 3.87

8% 24.60 19.13 15.13 10.33 7.47 5.33 4.40 3.53 2.53 1.73

9% 20.07 13.73 10.60 7.07 4.80 3.87 2.27 2.27 1.27 0.60

10% 15.27 10.93 7.80 5.13 2.60 2.07 1.07 1.13 0.33 0.20

20% 0.87 0.47 0.47 0.07 0.00 0.00 0.00 0.00 0.00 0.00
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7 Conclusions

Results show that neural networks can be used to acquire geometrical infor-
mation of a discrete (binary) image from its projections only, without actually
reconstructing the image itself. We investigated here the problem of connected-
ness and convexity, estimating the number of intensity levels in an image, and
the estimation of the perimeter solely based on the projection data. Such infor-
mation is especially useful in discrete tomography. As a preprocessing step, the
methods presented here can be used to supply valuable knowledge to aid ad-
vanced reconstruction algorithms that could exploit this advantage. One way to
do this is to reformulate the reconstruction problem, and to attack the problem
at hand as a global optimization task, this topic is still under heavy investiga-
tion. Also, improved versions of these tools might be able to identify different
geometrical or topological features, or possibly even a combination of several
ones. For instance, since the area of the object under investigation is given by
the projections, one might be tempted to use the estimated perimeter, and try
to draw conclusions about the possible shapes the object might have. Overall, in
this paper we gave an up-to-date summary of our work on this topic, additional
experiments are to follow.

Acknowledgments

The publication is supported by the European Union and co-funded by the
European Social Fund.
Project title: ”Broadening the knowledge base and supporting the long term
professional sustainability of the Research University Centre of Excellence at the
University of Szeged by ensuring the rising generation of excellent scientists.”
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