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Károly Zsolnai and László Szirmay-Kalos
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Abstract. In this paper we address the fluid control problem, where,
alongside simulating the motion of fluids, an arbitrary density distribu-
tion (a shape of any kind) is given, and forces are exerted on the system
with the intention that the fluid would sooner or later take this form.
Prior research work has shown that the problem is challenging due to
multiple reasons: first, every region is tightly bound to its neighborhood,
therefore a force that acts upon a point in space will also have effect on
nearby regions, making the controlled process strongly coupled. Second,
it also a desirable requirement that the controlling external force field
should make the fluid flow realistic, even though it is highly improb-
able that a given volume of water would suddenly flow exactly into a
given shape. Utilizing sophisticated mathematical methods from differ-
ent fields such as optimization and control theory, current state of the
art techniques are able to give visually pleasing results at the cost of 5
to 7 minutes of computation time per frame. We present a novel solution
for the fluid control problem with certain restrictions, making it possible
to solve it in real-time.

1 Introduction

Fluid simulation means the mimicking of real fluids by solving the governing
equations with parameters and boundary conditions reflecting a real scene. Fluid
control, on the other hand, is the determination of parameters in a way that the
resulting fluid motion follows a prescribed behavior.

Let us consider a fluid element of unit mass. Its motion is described by
Newton’s second law, stating that the acceleration a, which is the derivation of
velocity u is proportional to the total force:

a =
du

dt
= F int + F ext

where the force is expressed as the sum of internal forces F int and external
forces F ext. Taking into account the specific phenomena of fluids, this equation
becomes the first Navies-Stokes equation:

∂u

∂t
+ (u · ∇)u︸ ︷︷ ︸

advection

= − 1

ρ
∇p︸ ︷︷ ︸

pressure

+ ν∇2u︸ ︷︷ ︸
diffusion

+ F ext︸︷︷︸
external forces

, (1)
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where u(x, t) is the traditional notation of the velocity field in fluid mechanics,
ρ stands for the density, p for pressure, ν denotes the kinematic viscosity of the
fluid, F ext is the representation for the sum of all external forces acting on a unit
mass fluid element, and the internal force is decomposed to the force of pressure
and the internal friction.

There are different ways to approach the numerical simulation of fluids [SS10].
The Lagrangian method treats the fluid as a collection of particles that move in
space and time according to their velocities and positions. The Eulerian approach
considers the problem from a different point of view: it defines a stationary grid
by its points, and the relevant quantities like pressure, velocity and density are
measured in these points. The fluid is expected to flow through and between these
grid points. The quality of the simulation depends greatly on the resolution of
the grid and since it is impossible to compute the quantities in infinite points
of the continuum, an interpolation function is used to obtain information from
between the sample points. An intuitive example to help understanding the key
difference between the two viewpoints is the following: when collecting data for a
weather report, the meteorologist can sit in an air balloon and measure quantities
like temperature, wind speed and directions, humidity while floating along the
flow of the air. This would be the Lagrangian approach. Someone utilizing the
Eulerian viewpoint may simply set up stationary measurement devices in various
places throughout the country. Advection term (u · ∇)u shows up because the
fluid element is not followed in the Eulerian viewpoint, but the location in focus
is fixed to the lattice points of a static grid. The first Navier-Stokes equation
expresses the conservation of momentum. In addition to this, the second equation
enforces the conservation of mass:

∇ · u = 0, (2)

For a detailed introduction to fluid dynamics we refer the reader to [CM93] and
[Bri08].

Computational fluid dynamics enjoys a wide variety of use in a number of
engineering and physics problems: it is possible to visualize heat distribution in a
newly designed car engine, to validate airplane design by performing wind tunnel
tests with a computer software, simulate gas or water flow in chopper pumps,
visualize and plan optimum air circulation conditions in buildings, calculate the
drag for accelerating vehicles of various shapes, or to understand the possible
outcomes better when a catastrophe, such as a flood, the tsunami, or a volcanic
eruption happens. There are also methods to help the medical examination of
humans by detecting probable spots in the aorta for aneurysms, little bulges in
the wall of blood vessels [RIM∗11], which, under extremal pressure conditions,
may explode, causing oftentimes lethal implications.

The more rigorous statement of the fluid control problem is the following:
there is a given density field that is to converge to a target density in time, while
retaining only natural movement in the fluid domain. To make the fluid obey
the control, we apply an external force field, intuitively meaning that we have
little spoons of infinitesimal size, which we use to stir the fluid in the chosen
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directions, doing it several, or even thousands of places at once. To measure how
good our job was done with the stirring, we measure the difference between the
obtained and the target density field.

Mathematical algorithms for most problems can be objectively compared as
they have their own, well-defined error metric. Comparing them is as simple
as choosing the one that offers the best time-quality trade-off for our needs.
However, there is no metric that would define how natural a fluid flow is, we are
left to judge by what seems and what feels to be natural for us.

In this paper, we present the following contributions:

- Statement of the fluid control problem and a brief overview of a state-of-the-
art solution to it.

- Observations regarding the fluid control problem, where simplifications can
be made to the target distribution while retaining its applicability to both
industrial and artistic use.

- A novel, highly parallelizable method to simplify the optimization approach
that relies only on local data, and which is able to solve the fluid control
problem in real time while retaining realistic looking fluid flows.

- An implementation of the algorithm on GPU hardware that is released along-
side this paper at website1.

2 Related work

Solving the Navier-Stokes equations requires the evaluation of three terms and
keeping the velocity field divergence-free throughout the process, for instance by
using Helmholtz-Hodge decomposition. However, the advection operator con-
sists of a directional derivative (u · ∇)u, where using the most straightforward
forward projection operator will result in an unstable simulation. Jos Stam ad-
dressed this problem with a stable advection formula in his paper [Sta99], where
instead of checking how the current density field would evolve in a time step, he
advised projecting the density field backwards and see where the density came
from for every point on the grid. Simulating fluids on a finite resolution grid has
a serious drawback, resulting in two symptoms: the first is that the simulation
of turbulent flows requires the modeling of high frequency changes in the ve-
locity field. Unfortunately, this is quite costly as increasing the grid resolution
raises the computational cost of the simulation by the magnitude of Θ(nd) for
a simulation of dimension d. Fedkiw et al. proposed a way to reinject the lost
energy into the system in the form of an external force field [FSJ01]. Literature
refers to this technique as Vorticity Confinement (Fvc). The second drawback of
the finite grid approach is that velocity information between the grid point is
obtained by bi- or trilinear interpolation. Unfortunately, the Navier-Stokes equa-
tions are not linear, but parabolic partial differential equations, therefore higher
order advection methods, such as the Back and Forth Error Compensation and
Correction Advection [DL03] and MacCormack Advection [SFK∗08] yield better

1 http://cg.iit.bme.hu/˜zsolnai
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quality solutions. It is also possible to obtain additional realism with generating
flow data with frequency higher than the Shannon-Nyquist limit for the given
grid resolution by using the Wavelet Transform [KTJG08].

Several solutions exists to solve the fluid control problem, such as Jos Stam’s
adjoint method [MTPS04], or the algorithm of Shi and Yu that adds a long-
range force field to even out the distribution of the fluid on a macro level, and a
short-range field to carve out the fine details of the target distribution [SY04].
Our approach based on this, so we provide the details of the calculation of the
long-range and short-range forces.

2.1 Long-range force fields

If some part of the fluid domain has excess density, meaning that ρj , the density
at point j is higher than target density ρtj , the region will transport density by
exerting force towards the direction of its neighborhood for those who have lower
density than the target. As in physics, the exerted force weakens as the distance
between the two points increases, therefore to maintain energy conservation,
some kind of falloff characteristic has to be introduced. This will be the definition
of the long-range force field in [SY04] that is responsible for arranging the density
field so it can start converging to the target on a macro level:

FL
i =

∑
j

[
ρj − ρtj

]+
|rij |α

rij
|rij |

, (3)

where rij is a vector that points from grid point j to i, and superscript + stands
for an operation that replaced negative values by zero. Most physical phenomena
such as light propagation, or forces like gravity and electric force have a squared
falloff with increasing distance, therefore it is not surprising that the choice of
α = 2 gives visually pleasing results.

2.2 Short-range force fields

Now a short-range force field is to be constructed to carve out the fine de-
tails of the target distribution locally. In [SY04], Shi and Yu have advised that
short-ragen force field F S is obtained as the solution of the following global
optimization problem:

min
FS

c1
∑
x

(∆ρ(x)− λ∆ρa(x))2 + c2
∑
x

(DIV (x))2 −

c3
∑
x

(
F (x)

|F (x)|
· ∇ρ(x)
|∇ρ(x)|

)2

−

c4
∑
x

∑
y

cos(θ(y)− θ(x)) +

c5
∑
x

∑
y

(∣∣F S(y)
∣∣− ∣∣F S(x)

∣∣)2 . (4)
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where every function depends on position x. The c1, . . . , c5 coefficients are used
to assign different weight values to the terms. We attempt to give an intuitive
interpretation of the formula: the first term is responsible to ensure that the
difference between the current and the target density is minimal by maximizing
the amount of density change in excess density areas, and minimizing it at areas
that match the target density well. The velocity field has to be divergence-free
throughout the simulation and control process, therefore in the second term, sub-
stituting ∇·u(x) into DIV (x) makes a plausible choice. However, measurements
show that we obtain better results by using the long-range force field, evaluate
the projection step afterwards to keep the divergence-free property, then using
∇ · F S(x) as a divergence term. The third term is the dot product between the
normalized direction vectors of the force field and the gradient of the density
field. Minimizing this is absolutely important to achieve natural looking flows:
the applied forces will be similar to the natural flows in the fluid domain for any
given time. As θ(x) represents the orientation of the short-range force field in
point x, the fourth and fifth terms are to minimize the amount of directional
variance and the magnitude of the applied short-range force field.

In [SY04], the idea of a new diffusion scheme has also been raised, where
diffusion, instead of its original role of smoothing the discrepancies of the density
field, would rather help the convergence of the image through acting as a stronger
distributive force in regions of poor convergence. Our experience shows that using
this method excels at controlling the density towards the feature points of the
target, therefore it is a valuable tool to obtain convergence for complex setups,
but at the cost of losing some realism on the fluid flow as the diffusion process will
be conspicuously asymmetric. If target density distribution is of high variance,
using biased diffusion helps convergence substantially. If maximizing the realism
of the fluid flow is a more important requirement, then omitting this technique
is the right decision, alongside with using low-variance target distributions.

3 The proposed method

The most important attribute of the new approach would be not to use short-
range forces due to its computational costs, therefore omit carving out some of
the fine details, but design a different, cheaper force field that is able to mobilize
large amounts of density towards the target density while still retaining a realistic
looking flow.

Long-range force computation given by equation 3 is also modified. Con-
structing this force field requires interactions whose number is a quadratic func-
tion of the number of grid points, which is undoubtedly too demanding. Luckily,
it isn’t necessary, since as we increase the distance, every sensible choice of α
will make the force decay in an at least quadratic manner, we can safely define
a maximum distance that is to be computed from every point.
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In addition, our version we have also relaxed the evaluation of the long-range
forces to regions that have nonzero target density,

FL
i =

∑
j

[
ρj − ρtj

]+
|rij |α

rij
|rij |

, ∀j : ρtj > 0, (5)

to reduce its cost to be proportional to only the volume where the target distri-
bution is nonzero, as opposed to the original method, where it is evaluated in
the full simulation domain.

Due to the simplification, it can occur that upon reaching convergence, excess
density remains around the outer side of the boundary of the target distribution.
To clean up these details around the boundary, an additional force field FC may
be applied that sucks the density back into the domain of the target distribution.
The use of this cleanup force field is entirely optional, and it would consist of
vectors that are oriented from points that contain density but have zero target
density and are near the boundary to every other point that has nonzero target
density. Formally:

FC
i =

∑
j:ρt

j
>0

ρj
|rij |α

rij
|rij |

∀i : ρti = 0. (6)

Deciding what should happen after the target density is reached is also a very
important task. While it would be straightforward to, for example, set ν to a
very high value to to “freeze” the fluid in the convergent subdomains, the results
will remain correct, though can not be expected to look very lifelike, making it
a simple, effective, but generally unconvincing solution.
Here we try to address the shortcomings of this approach by introducing a
speedup factor ψ, which increases the velocity of the fluid at regions where
convergence is reached.

It may sound quite counterintuitive: why speed up the fluid at regions where
it already looks correct? It would be reasonable to say that it is the exact op-
posite of what should happen. On a microscopic level, freezing the fluid domain
would always give the best choice: if we have only a few points in space, freez-
ing them by assigning a very high kinematic viscosity value upon reaching the
target distribution will ensure that they will remain in the correct state all the
time. Let’s consider a simple example on a macroscopic level, where we have a
fluid domain of significant size where the target distribution can be reached by
going through a narrow choke point. At this region, the fluid will start freezing,
therefore it will prevent any further fluid movement, making it impossible to
get density through. This scenario will not be restricted only to narrow choke
points: for almost every practical case on closed shapes, the closer we are to the
state of convergence, the higher the probability for this to happen. Intuitively,
freezing the fluid can be associated with the “after you’re done, just stop and
rest” behavior, as opposed to speeding up the velocity, which would mean more
like “after you’re done, start helping others”. This behavior will not only allow
the fluid to flow through narrow choke points, but effectively uses them to its
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advantage by turning them into local regions that transfer density to neighbor-
ing regions of poor convergence. As our results show, this approach will not
just preserve fluid movement after the target density is reached, but will help
increasing the speed of the convergence as well.

3.1 The final form

Putting it all together, the proposed form of the Navier-Stokes equations for
controlling the fluid is as follows:

∂u

∂t
+ (u · ∇)u = ψ

(
−1

ρ
∇p+ ν∇2u

)
+ FL + FC + F vc,

ψ =

{
1 + δ, where |ρt − ρ| < ϵ,

1, elsewhere,

(7)

where the forces are the modified long-range force, cleaning-up force and the
vorticity confinement force, and δ is small value to keep the fluid in motion after
convergence when the actual density is equal to the target density within error
threshold ϵ. The differential equation can be solved with Neumann, e.g.

∂u

∂n

∣∣∣
∂Ω

= 0.

or Dirichlet type boundary conditions. This technique is capable of guiding the
fluid towards the target distribution in real-time.

4 Results

The properties of the proposed technique are as follows:

- The fluid simulation and the control algorithm can be run in parallel as they
take 18 and 14 milliseconds at most respectively on an 5122 grid with 20
Jacobi iterations, therefore it is a real-time solution,

- It yields fast convergence speeds,

- It is to be used with target distributions of low-variance for a high measure
of realism, or,

- It is to be used on more complex, higher-variance distributions with the
aid of biased diffusion at the cost of less realism and more computational
demands,

- Relying only on local data, it can be extended to simulations of any dimen-
sion with favorable amount of computational overhead.

Out test results using Neumann-type boundary conditions without control force
fields show that it is unreasonable to expect a desirable degree of convergence
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(Figure 1). This method is also unable to control any amount of density which
is not already inside the target distribution domain. The results using the new
method were rendered in real-time and are shown in Figure 2, which, using
roughly the same amount of density, was able to achieve fast convergence.

5 Conclusions

In this paper, we have shown a novel algorithm to the fluid control problem,
where an initial state and a target distribution are given for the fluid, with
the intention that it would sooner or later take the form of this distribution.
A solution to this problem is an external force field that is changing in time,
describing the forces that have to be exerted on the fluid to take a given shape.
This force field makes the fluid converge in a short amount of time, with the
slightly ambivalent requirement of giving a realistic flow in the meantime, even
if it is highly unlikely that a bowl of water would suddenly take the form of
natural objects. Unlike state-of-the-art methods giving convincing results at the
cost of 5 to 7 minutes of computation time per frame, our method is able to
solve the fluid control problem effectively.
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Fig. 1. An imitation of the solution to the fluid control problem where no control
forces, only boundary conditions are used. The example shows that even if the fluid is
locked inside the domain of interest, it is highly unlikely that it would suddenly flow
into the shape of a star.
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Fig. 2. The proposed method runs in real time, provides good coverage of the target
density, and is aware of the regions of poor convergence, which are constantly helped
out by nearby regions. Roughly the same amount of density is used as in Figure 1.
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